Mechanics of Materials

(http://bernoulli.iam.ntu.edu.tw/)

By Prof. Dr.-Ing. An-Bang Wang (王安邦)

Chapter 1

INTRODUCTION AND REVIEW OF STATICS*

(* Statics is concerned with bodies that are acted on by balanced forces)

Preface (I)

- Grading Policy: Homework 15%, Mid-term exam 25+25%, Final exam 25%, Quizzes 10% + Q&A 10%
- 課程要求:課堂講解+實做,有平時表現(+IRS)、習題作業、學期作業、期中考與期末考。作弊該次行為不計分,且考試作弊一律送學校處理。
- Textbook: W. F. Riley, L. D. Sturges, and D. H. Morris, Mechanics of Materials, 6th Ed., John Wiley & Sons, 2007

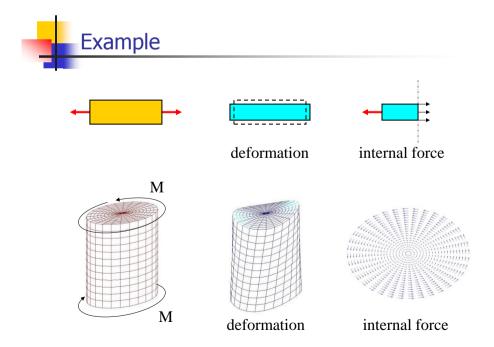
 Reference: J. M. Gere (and S. T. Timoshenko), Mechanics of Materials, 6th Ed., Thomson Brooks/Cole, 2004.
- 先修科目: 普通物理學甲上
- 作業要求:
 - 1.作業指定後再隔週上課前繳交至講桌上,作業遲交扣分。 2.作業若有抄襲情事,<u>被抄與抄襲者該次作業不計分</u>。
- 授課老師: 王安邦(應力館405室),02-33665651,
 e-mail: abwang@spring.iam.ntu.edu.tw
- Office Hours: 每週二 12:20~13:10 @ R405 (IAM)
- 助 教:甘名揚(舊數學館303), 電話: 33663069,行動電話: 0987202489,

e-mail: r05524021@ntu.edu.tw

Preface (II)

- 課程概述:本課程介紹材料力學的基本概念與分析方法,以瞭解基本 構件受力後的應力與應變狀況。
- 課程目標: 課程結束時,修課同學應具備以下能力:
 - 1.了解<u>應力</u>的定義,能推導不同方向應力的轉換公式,並能計算主應力 及最大剪應力。
 - 2.能以位移、變形及<u>應變</u>來描述物體形狀的變化,了解應變在不同方向 的轉換公式,並能計算主應變及最大剪應變。
 - 3.了解材料之材料特性及其應力-應變關係。
 - 4.了解材料強度及安全係數的觀念。
 - 5.能分析桿件受軸向荷重的應力及變形。
 - 6.能分析壓力容器的應力分佈。
 - 7.了解應力集中現象。
 - 8.能分析桿件兩端受扭力作用的應力及變形。
 - 9.能分析梁受彎矩或側向力作用的應力及變形。

課程大綱 & Schedule of Teaching Plan

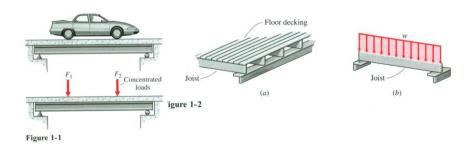

- 1. Introduction and Review of Statics 9/12, 9/15
- 2. Analysis of Stress: Concepts and Definitions 9/19, 9/22, 9/26, 9/29, 10/03, 10/6,10/13, 10/17
- 3. Analysis of Strain: Concepts and Definitions 10/17, 10/20, 10/24
- 4. Material Properties and Stress-Strain Relationships 10/24, 10/27, (10/31), 11/03, 11/07, 11/10
- 5. Axial Loading Applications and Pressure Vessels 11/14, 11/17, 11/21, 11/24
- 6. Torsional Loading of Shafts 11/24, 11/28, 12/01, 12/08, 12/12, 12/15,
- 7. Flexural Loading: Stresses in Beams 12/15, 12/19, 12/22, 12/26, 12/29,
- 8. Flexural Loading: Beam Deflections 12/29, 01/02, 01/05
- Expected 1st Midterm exam: 2017/10/31 (Tue)
- Expected 2nd Midterm exam:2017/12/05 (Tue)
- Semester homework: 2017/12/08 (Fri)
- Final exam: 2017/01/09 (Tue)

1-1 Introduction

Objective

Development of relationships between the loads applied to a *nonrigid* body and the internal forces and deformations induced in the body.

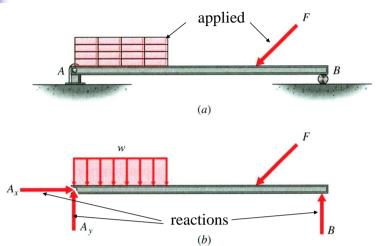
1-2 Classification of Forces


■ contact ~ noncontact

(surface) (weight)

- concentrated ~ distributed ?
- external ~ internal (see 1-5 in detail)
- applied ~ reactions ?
- static ~ dynamic (impact, cyclic...)

Concentrated Load ~ Distributed Load



concentrated distributed

Ú

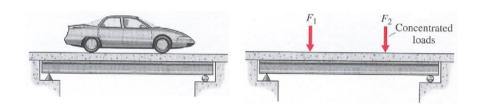
Types of Loads

1-3 Equilibrium of a Rigid Body (I)

Rigid body: a body that does not deform under the action of applied loads

$$\begin{cases} \sum \mathbf{F} = \mathbf{0} \\ \sum \mathbf{M}_{\mathbf{0}} = \mathbf{0} \end{cases}$$

$$\begin{cases} \sum F_{x} = 0 & \sum F_{y} = 0 \\ \sum M_{x} = 0 & \sum M_{y} = 0 \end{cases}$$


$$\sum M_{z} = 0$$

1-3 Equilibrium of a Rigid Body (II)

Free-body diagram (FBD):

A (carefully prepared) drawing or sketch that shows a "body of interest" separated from all interacting bodies.

A review of Mechanics

Mechanics of rigid body

Statics

Dynamics
kinematics kinetics

Mechanics of deformable body:

Mechanics of Materials

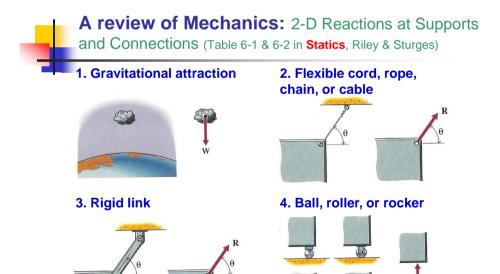
Elasticity

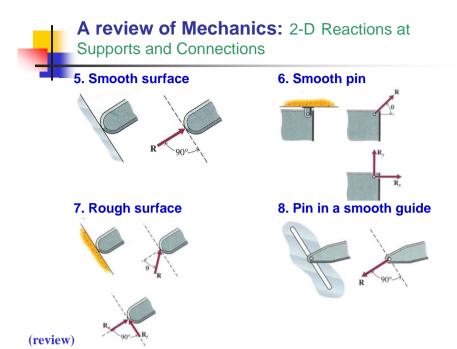
Plasticity

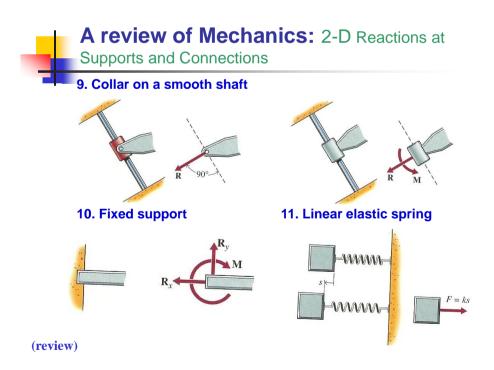
Rheology

Mechanics of fluid (continuous deforming)

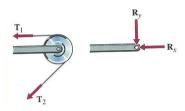
(review)




A review of Mechanics: Forces


- A *force* is described by its magnitude, direction, and point of application. Force is a **vector** quantity.
- Effects of a force on a body:
 - external effect: change body motion (dynamic), or develop reactions on the body (static).
 - internal effect: deform the body → stress/strain (mechanics of materials).

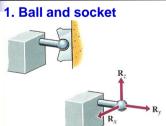
(review)



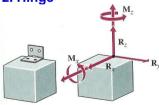
A review of Mechanics: 2-D Reactions at

Supports and Connections

12. Ideal pulley

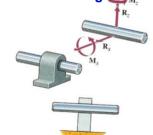


(review)

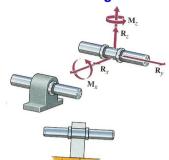


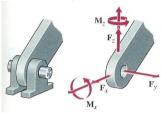
A review of Mechanics: 3-D Reactions at

Supports and Connections

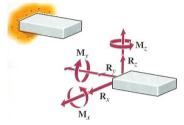


4. Journal bearing a

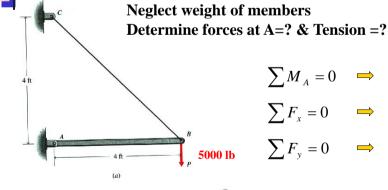

(review)


A review of Mechanics: 3-D Reactions at

Supports and Connections


5. Thrust bearing

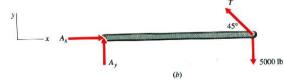
6. Smooth pin bracket



7. Fixed support

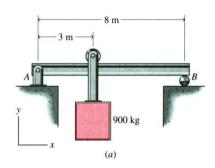
(review)

Example Problem 1-1

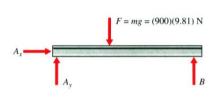

$$\sum M_A = 0$$
 \Longrightarrow T

$$\sum M_A = 0 \implies T$$

$$\sum F_x = 0 \implies A_x$$


$$\sum F_y = 0 \implies A_y$$

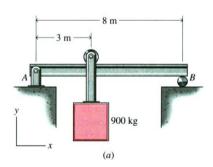
$$\sum F_y = 0 \implies A_y$$



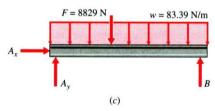
Free-body diagram

Neglect Beam mass Determine reactions A=? & B=? (a) Neglect beam weight

$$\sum M_A = 0 \implies B$$


$$\sum M_{A} = 0 \qquad \Longrightarrow \qquad B$$

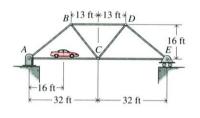
$$\sum F_{x} = 0 \qquad \Longrightarrow \qquad A_{x}$$

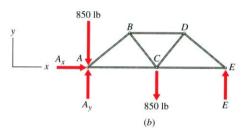

$$\sum F_{y} = 0 \qquad \Longrightarrow \qquad A_{y}$$

$$\sum F_y = 0$$
 \Longrightarrow A_y

Example Problem 1-2

Beam mass = 8.5 kg/m**Determine reactions A=? & B=?** (b) Include beam weight


$$\sum M_A = 0$$
 \Longrightarrow B


$$\sum F_x = 0$$
 \Longrightarrow A_x

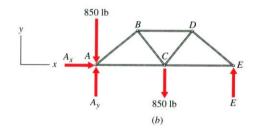
$$\sum F_{y} = 0$$
 \Longrightarrow A_{y}

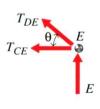
(consider one side)

Car = 3400 lb**Determine forces in members** BD=? DE=? & CE=?

$$\sum M_A = 0 \qquad \Longrightarrow \qquad A$$

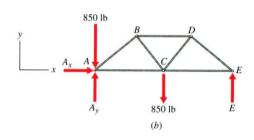
$$\sum F_x = 0 \qquad \Longrightarrow \qquad A$$

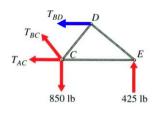

$$\sum F_y = 0 \qquad \Longrightarrow \qquad A$$


$$\sum F_x = 0$$
 \Rightarrow A

$$\sum F_{y} = 0$$
 \Longrightarrow A_{y}

Example Problem 1-3 (continued)



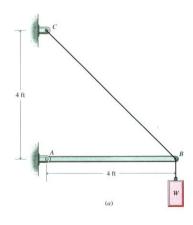

Method of joints

$$\left\{ \begin{array}{l} \sum F_x = 0 \\ \sum F_y = 0 \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} T_{CE} \\ T_{DE} \end{array} \right.$$

Example Problem 1-3 (continued)

Method of Sections

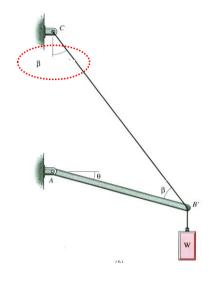
$$\sum M_C = 0$$
 \Longrightarrow

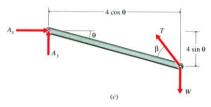


 T_{BD}

1-4 Equilibrium of a Deformable Body

■ Example Problem 1-8


Assumptions:


bar AB rigid wire BC deformable pins frictionless

$$T_{BC} = k\delta$$
, k = 2500 lb/in

Determine tension in wire=?

3 equil. eqs 4 unknowns

$$\sum M_A = 0$$

$$\boldsymbol{A}_{j}$$

$$\sum F_x = 0$$

$$\sum F_y = 0$$

$$+ T_{BC} = k\delta$$

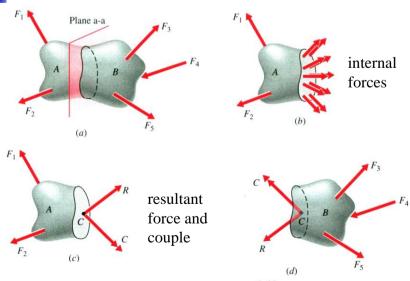
$$\sum F_{x} = 0$$

$$\sum F_{y} = 0$$

$$+ T_{BC} = k\delta$$
 force-deformation

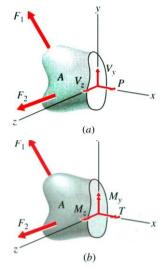
Influence of Wire Elongation

	rigid wire	k = 5000 lb/in	k = 2500 lb/in	k = 2000 lb/in
Т	7071 lb	7221 lb	7379 lb	7893 lb
θ	O°	2.465°	5.097°	14.246°



Solution of Defomable Body Problems

- Equations of equilibrium
- Force-deformation relationship
- Geometry of deformation



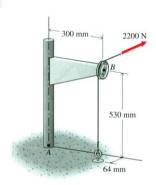
1-5 Internal Forces

Resultant Force and Couple

$$\mathbf{R} \Rightarrow P, \ V_y \ , \ V_z$$

P : normal force

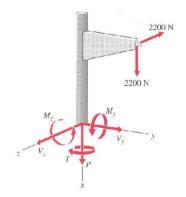
 V_y , V_z : shear forces


 $\mathbf{C} \Rightarrow T, M_y, M_z$

T : twisting moment or torque

 M_{v} , M_{z} : bending moments

Example Problem 1-9

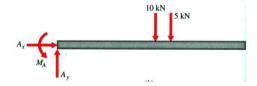

$$\sum F_{x} = 0 \qquad \sum M_{x} = 0$$

$$\sum F_{y} = 0 \qquad \sum M_{y} = 0 \qquad \Longrightarrow \qquad P, V_{y}, V_{z}$$

$$\sum F_{z} = 0 \qquad \sum M_{z} = 0$$

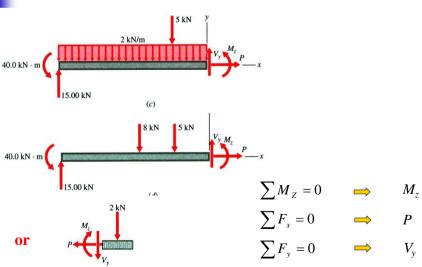
$$T, M_{y}, M_{z}$$


$$\sum F_z = 0 \qquad \sum M_z = 0$$


$$P, V_y, V_z$$

$$T, M_y, M_z$$

Determine (a) support reaction? (b) internal force at x=4m?


$$\sum M_A = 0 \qquad \Longrightarrow \qquad M_A = ?$$

$$\sum F_x = 0 \qquad \Longrightarrow \qquad A_x = ?$$

$$\sum F_{v} = 0 \implies A_{v} = ?$$

Example Problem 1-10

6 Exercises

1-9, 1-21, 1-25, 1-63, 1-76, 1-83