

100-102年度奈米國家型科技計畫
應用奈升液珠操控技術於高通量細胞測試之
可調式奈微複合結構平台
Tunable nano/micro-composite structure platform for high throughput cell analysis <i>via</i> manipulating nano-liter droplets
2011/08/01-2014/07/31, NTD 8,000,000 (2011)/7,000,000 (2012)
計畫主持人:楊鏡堂 终身特聘教授,國立台灣大學機械工程學系
計畫共同主持人: 陳文鍾 教授,國立台灣大學醫學院急診醫學科
周涵怡助理教授,國立台灣大學醫學院口腔生物科學研究所
應用於生化微液珠操控及檢測之可調式奈微複合結構平台開發 (總計畫及子計畫一)
計畫共同主持人: 陳志臣 講座教授兼工學院院長, 國立中央大學機械學系
孫珍理 副教授,國立台灣大學機械工程學系
微流道內奈微液珠動力操控及其與開放式系統整合之研究(子計畫二)
計畫共同主持人:許佳賢助研究員,國家衛生研究院醫工組 陳致真助理教授,國立清華大學奈微所

Droplet Fusion and Mixing					
			Submitted to	o MNF, 2011	
e 60 μm			30 µm		
$Q_1 = Q_2 < 0.6$ (<i>Ca</i> < 0.0048)	$\begin{array}{c} 1 < Q_1 = Q_2 < 1.6 \\ (0.0079 < Ca < \\ 0.0127) \end{array}$	$2 < Q_1 = Q_2$ (0.0159 < Ca)	$Q_1 = Q_2 < 0.2$ (<i>Ca</i> < 0.0016)	$0.4 < Q_1 = Q_2$ (0.0032 < Ca)	
no breaking		0000		000	
Fusion Unstable breaking	Stable fusion Stable breaking	No fusion No breaking	Stable fusion Stable breaking	No fusion Breaking	
During the two droplets impact with each other. (side-by-side)		none	During the two droplets tend to separate. (decompression)	none	
Asymmetric breaking		none	More symmetric breaking		
 Stretching and folding at the 3-D overlap region. Agitating by two inversely recirculating flows at the narrower straight outlet channel. 		none	Agitating by two inversely none recirculating flows at the narrower straight outlet channel.		
	Drople Q ₁ =Q ₂ < 0.6 (Ca < 0.0048) Q ₁ =Q ₂ < 0.6 (Ca < 0.0048) Fusion Unstable breaking During the two drop ot (side-1) During the two drop ot (side-1) Asymmett • Stretching and follo overlap region. • Agitating by two in flows at the narroo channel.	Dropplet Fusio $60 \mu m$ $Q_1=Q_2 < 0.6$ $(Ca < 0.0048)$ $1 < Q_1=Q_2 < 1.6$ $(0.0079 < Ca < 0.0127)$ $M_1 = M_2 = M_2 < M_2$ 0.0127 $M_2 = M_2 < M_2$ 0.0127 $M_2 = M_2 < M_2$ $M_2 < M_2$ $M_2 = M_2$ M_2 $M_2 = M_2$ M_2 $M_2 = M_2$ M_2	Dropplet Fusion an60 μ m $Q_j=Q_2 < 0.6$ $(Ca < 0.0048)$ $2 < Q_j=Q_2 < 1.6$ $(0.0079 < Ca < 0.0159 < Ca)$ $Q_j=Q_2 < 0.6$ $(Ca < 0.0048)$ $2 < Q_j=Q_2$ $(0.0159 < Ca)$ $Q_j=Q_2 < 0.6$ $(Ca < 0.0048)$ $2 < Q_j=Q_2$ $(0.0159 < Ca)$ $P_{interaking}$ $2 < Q_j=Q_2$ (0.0127) $P_{interaking}$ $2 < Q_j=Q_2$ (0.0127) $P_{interaking}$ $2 < Q_j=Q_2$ $(0.0159 < Ca)$ $P_{interaking}$ $2 < Q_j=Q_2$ (1.0127) $P_{interaking}$ $2 < Q_j=Q_2$ (1.0127) $P_{interaking}$ <	Dropplet Fusion and MixingsSubmitted to $60 \ \mum$ $30 \ \mum$ $Q_{J}=Q_{2} < 0.6$ $(Ca < 0.0048)$ $1 < Q_{J}=Q_{2} < 1.6$ $(0.0079 < Ca < 0.0159 < Ca)$ $Q_{J}=Q_{2} < 0.2$ $(Ca < 0.0016)$ $Q_{J}=Q_{2} < 0.2$ $(Ca < 0.0016)$ $V_{00}=V_{00} < V_{00}$ $V_{00}=Q_{2} < 1.6$ $(0.0179 < Ca < 0.0159 < Ca)$ $Q_{J}=Q_{2} < 0.2$ $(Ca < 0.0016)$ $V_{00}=V_{00} < V_{00}$ $V_{00}=V_{00}$ $V_{00}=V_{00} < V_{00} < V_{00}$ $V_{00}=V_{00} < V_{00} < V_{00}$ $V_{00}=V_{00}$ $V_{00}=V_{00} < V_{00} <$	

method, one can not only evaluate semi-quantitatively the target DNA but also screen mismatches of DNA samples with a naked eye or simple spectrophotometer.

