Measurement and simulation of Optomechatronic system

Coordinator: An-Bang Wang, Dr.-Ing.
Institute of Applid Mechanics
National Taiwan University

E-mail: abwang@spring.iam.ntu.edu.tw

Contributors

- *Gary Chen* Flotrend Corporation
- Tzong-Sheng Lee
 Microsystems Application Technology Division
 Industrial Technilogy Research Institute
- An-Bang Wang
 Institute of Applid Mechanics
 National Taiwan University
- RueyHor Yen
 Department of Mechanical Engineering
 National Taiwan University

Course contents

- Introduction to flow measurement in the optomechatronic system (by A.-B. Wang)
- Flow visualization (by A.-B. Wang)
- Temperature measurement (by T.-S. Lee)
- Pressure measurement (by A.-B. Wang)
- Velocity measurement (by A.-B. Wang)
- Introduction to simulations in the optomechatronic system (by R.-H. Yuen)
- Numerical simulations methods (by R.-H. Yuen)
- Simulation application & practice (by G.Chen)

Chapter 1 Introduction to Measurement and simulation of optomechatronic system

Contents

- What is the optomechatronic system?
- Trend of the world
- Examples of optomechatronic system
- Why Measurements?
- Why simulations?

Introduction to the optomechatronic system

- What is the optomechatronic system?

 **Optoelectronic + Mechatronic system
- Products of optomechatronic system: optical storage, optical input/output devices (scanner, digital camera, PC-camera, fax machine, printer, ...), optoelectric displayer, optical communcations, optoelectric elements (LED, laser dial, CCD, ...)

Trend of the world

IA-products

E-mail terminals

Air Communication / Smart Phone Nokia/ 9000Communicator Motorola / MAPS

Net TVs

Internet

Worldgate / Worldgate Sony, Philips / WebTV

Gaming console devices

Sega / Dreamcast Sony / PlayStation 2 Ninterdo / Dolphin

Smart handheld devices

Compaq / Aero series 3Com,Palm / Palm VII Hewlett-Packard / Jornada series

Screen Phones

InfoGear / iPhone Alcatel / WebTouch Nortel / Power Touch

Web terminal

Wyes, Hewlett-Packard, NCD/Tektronix, Sun, Boundless, Neoware

Measurement and Simulation of Optomechatronic Systems 必 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

3C products

IA market prediction (I)

(Source: IDC, MIC ITIS 2000/3)

IA market prediction (II)

Prediction of IA from Taiwan

(Source: MIC ITIS 1999/12)

PC market analysis (1999-2004)

	1999	2000	2001	2002	2003	2004
Desktop	0.222	0.156	0.156	0.117	0.108	0.105
Notebook	0.282	0.269	0.195	0.151	0.127	0.117
PC-server	0.293	0.194	0.178	0.141	0.126	0.111
Overall Po	0.234	0.177	0.164	0.124	0.112	0.108

เราะครองเทิด ระ	0.15	,-			
2004 4884 3804	0.05				
6267 4955	0-	199	9 2	.000)

0.25

tte

						• 7
	1999	2000	2001	2002	2003	2004
Desktop	90260	104310	120551	134676	149205	164884
Notebook	19935	25295	30240	34798	39222	43804
PC-server	3125	3731	4394	5013	5643	6267
Overall Po	113320	133336	155185	174487	194070	214955

2001 2002 2003 2004

■ Desktop

■ Notebook
■ PC-server

Overall PC

(unit: x1000, Source: IDC)

Measurement and Simulation of Optomechatronic Systems year

NB design & analysis

The Need of Thermal Management

Thermal design of CPU

Design constrain: T_{j,max} ≤ 125°C

From Azar (2000)

Thermal requirement & design

Year	No. Gates/Device	Feature Size (µm)	Voltage	Power (μW/Gate/MHz)
1995	300k	0.35	3.3V	0.64
1997	1m	0.25	3.0V	0.27
1999	3m	0.25	2.5V	0.15

	Light Bulb	BGA Package
Power dissipation	100W	25W
Surface area	106 cm ² (bulb surface area)	1.96 cm ² (die area)
Heat flux	0.9 W/cm ²	12.75 W/cm ²

- High speed
- No. gates on device
- Spatial constrain

From Azar (2000)

Solutions in the future

New electronic technology

- Silicon germanium (SiGe)
- Amorphous computing
- DNA, optical and quantum machine New cooling technology
- More precise CFD-designs,
- New material ...

From Azar (2000)

(photo: therm ally conductive plastic compound from M ack Plastics, k > 20W /m K up to $600^{\circ}F$)

The need of thermal management

- The objective of thermal management is to ensure reliable mechanical and operational performance for adverse environmental condition of system.
- Reduction of temperature
 ⇒ reduce thermal stress ⇒ remain operation reliability
- component junction temperature within 80 ~ 180°C.

Electronic cooling

• An electronic enclosure includes:

- environment

- system

- shelf (cage)

- circuit board

- component

- Die parts

System

Shelf

Example of thermal management

Electronic sink design

Data projector

- The size-limit of the CRT-TV $\sim 40''$, (> 100kg)
- Projection type is suitable for the large size display, e.g., $40'' \sim 60''$ (or more)
- Advantages of the data projector (in comparison with the RGB-CRT projector):
 - small size, light
 - high lumination (ANSI > 800Lumens)
 - high resolution (800x 600SVGA, 1024 x 768XGA)
 - lower price
 - user-friendly

Development of Data projector

Type: Weight:

Development of Data projector

Resolution:

SVGA:800x640

XGA:1024x768

SXGA:1280x1024

UXGA:1600x1200

Brightness:

(Source: PIDA)

Market of Data projector

Schematic diagram of Data projector

- A data projector includes (a) illumination,
 - (b) color separation & combination, and
 - (c) projection subsystems

LCD Data projector

DLP Data projector

Light Source

DLP: digital light processing

DLP Projector Optical System

Color Filter

(source: WWW.TI.COM)

LCD & DLP

LCD: liquid crystal display

DLP: digital Light processing

	LCD	DLP
resolution	VGA, XGA	XGA
brightness	High	Low
contrast	High	Low
weight	Heavy	Light
complexity	High	Low
cost	Low	High

Development of Data projector

- Future development:
 - lower cost
 - lower weight
 - lower noise
 - satisfactory resolution
 - satisfactory light intensity
 - better light uniformity
 - high efficiency (Lumen/watt)

Development of Data projector

- \times 0.9 (optics)
- \times 0.6 (display)
- × 0.66 (color)
- \times 0.8 (polarisation)

~0.3 total optical efficiency

more than 25% today in comparison with 5% in 1993.

DVD/CD constructure

Pickup head of DVD/CD

DVD & CD

	DVD	CD
Track pitch (um)	0.74	1.6
Minimum pit length (um)	0.4/0.43	0.83
Substrate thickness (mm)	0.6	1.2
Wavelength (nm)	650	780
Reference velocity (m/s)	3.49/3.84	1.2~1.4
Numerical aperature	0.6	0.45

Pit Length Track Pitch

DVD & CD

Discs		Single sided single layer	Single sided dual layer	double-sided single layer	Double-sided dual layer
Max.	12cm	4.7GB	8.5GB	9.4GB	17GB
capacity	8cm	1.4GB	2.6GB	2.8GB	5.2GB

Reflectivity: SL 45~85%, DL 18~30%

Distance between two layer : $55\pm 15 \mu$ m

DVD-driver market

Specification of pickup head

- Spot size on track
- Spot size on substrate
- Defocus margin
- Tilt margin
- Spherical aberration

- λ / NA
- dNA
 - $\lambda /(NA)^2$
- $\lambda / d(NA)^3$
- $\lambda / \delta (NA)^4$
- NA: Objective lens numerical aperture
- λ : Wavelength of light source
- d : Substrate thickness
- δ : Thickness variation

Difficulties of DVD

- DVD pickup heads read high density disc(4.7G) : Track 0.74 μ m , min. pit length 0.4 μ m
- Objective lens NA=0.6 and spot size (FWHM) must be smaller than 0.6 $\,\mu$ m .
- DVD optical heads have complicated optical system, high speed response actuator, and high bandwidth photo detector, and generate the signals to focusing, tracking, and reading.
- DVD optical heads have high precision demand : focusing error $<\pm~0.23~\mu$ m , tracking $<\pm~0.022~\mu$ m , optical head axis tilt error $<\pm~10$ arc min.

Bragg fiber grating (I)

Application: wave selector for optical communication $\lambda = 2 \text{ m n } \Lambda$

Bragg fiber grating fabrication

Ga-doped fiber $UV(\sim 240 \text{nm}) \Delta n (\sim 10^{-4})$

Bragg fiber grating example

Application: wave selector, circulator

Thermal sensitivity: 0.01nm/°C

(thermal expansion coef. 2.3×10^{-6} for Si)

Tools for Solving Problems

Practical Problems

Mathematical Methods (Numerical/Analytical)
Non-linear PDE

Experimental Methods

Flow chart for Solving Problems

Thermal management

Light illumination 77? Size >> ?

Drying technology (I)

Drying technology (II)

Drying technology (III)

Current designs of MAVs

Why experiment?

- Extend physical understanding of a particular flow phenomenon, especially when the problem is not phenomenologically understood
- Test new theoretical results
- Verify mathematical models of CFD
- Establish scaling laws
- Measure for control purpose

Thermal Flow Measurements

- Fluid + solid : liquid, gas, m ixed-phase, ...
- M easurem ent of fluid properties: viscosity, density, surface tension, ...
- M easurem ents of flow properties:

 Pressure, velocity, particle size distributions,
 tem perature distributions, shear force, ...
- General requirem ents: accuracy, repeatability, cost, ...

Temperature Measurement

Contacting measuring Non-contacting method

Hg-thermal meter
Thermal couple
Thermister
IR-measuring device

. . . .

<29° black
30° red
32° yellow
35° green
40° blue
>47° black

(Sänger, Hypersonic space-shuttle test in the DLR)

Pressure Measurements

- Pressure is derived from force per unitarea.
- Pressure transducers convertan applied pressure into a sensible signal (electric signal or others) through the change of displacem ent, strain, piezoelectric response...
- The choice of transducer varies greatly depending on m any factor like pressure range, dynam ic response, pressure m edia, dim ensional restrictions,... etc

Velocity Measurements (I)

Bemoulli's Equation

- A verage velocity: flowm eter
- O Local velocity:
 - -M echanical rotator
 - -Pitot-static tube
 - -Hot-wire/-film

Velocity Measurements (II)

- LDA or LDV: Laser Doppler Anemometer (or Velocimetry)
- PIV: particle image velocimetry

$$V (x,t)=\Delta x(x,t)/\Delta t$$

- Seeding
- Illum ination (tw ice in succession)
- Im age Recording
- Vector processing

Particle/drop size measurement

- Optical
 Measurement for
 Multi-phase flows
- Particle size distributions
- Velocity distributions
- © Refractive index distributions
- Temperature distributions

Why simulations?

Advantages:

- In some cases, doing experiment is not possible or too expensive.
- Easy to change controlling parameters
- Simulation is, in general, quicker and cheaper
- Exact boundary conditions

Disadvantages:

- Simulation includes uncertainties of numerical errors and modelling
- Verification test of experimental is always needed

Simulations

Category:

- Laminar flow simulations
- Turbulent flow simulations

Numerical methods:

- Direct simulation (DS)
- Large eddy simulation
 (large eddies calculated by direct simulation and small eddies by numerical modelling)
- Simulation with turbulent modelling

Thermal simulations

(From G. Chen)