Chapter 5§ Velocity Measurement

(by An-Bang Wang)
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Velocity measurements In Industry
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Traditional velocity Measurements

©® ( flow rate = ) Average Bernoulli’s
velocity Equation 2
Q=UA PP, V"
py P2

® Local velocity measurement:

- mechanical rotation*($)}
- Pitot-static tube ($9%)
- Hot-wire/-film*($$$)

(* regular calibration needed)
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Pitot Tube & Prandtl Tube
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Dynamic pressure measurement

Measurement of dynamic pressure o

 Pitot-static tube (or Prandtl tube) is used to i
measure dynamic pressure and hence flow :
velocity. gl

* |t should not be used at too low Reynolds
numbers or too close to a wall.

* Advantages: ..  _ £ e oo Srcomterene) ot u{
robust, e emm— |
cheap - |
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Introduction to
Hot Wire/Film Anemometry
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Velocity measurement by
using hot wire/film anemometer
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Thermal Anemometer

Hot wire and hot film are most commonly used sensor of
thermal anemometers.

®Advantages:
- convenient usage
- fast response
®Disadvantages of

thermal anemometer:
- Intrusive
- calibration-required
- fragile
- blind to direction
- thermo-sensitive
- regular cleaning needed
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Principle of thermal anemometers (l)

Thermal anemometer is an indirect measuring technique
(not the velocity but the heat loss from a thin, heated wire
IS measured and related to the flow velocity.)
The heat loss of a hot wire (or hot film) is dependent on a
number of factors:
- relative velocity between sensor and fluid medium.
(magnitude and direction)
- temperature difference between sensor and medium.
- material properties of sensor and medium.(e.g.
thermal conductivity, film coefficient,...etc.)
- dimensions of the sensor.
If the last three factors are kept constant, a calibration
can be given the relation between the heat loss and the
flow velocity
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Principle of thermal anemometers (ll)

* The basic circuitry for hot-wire and hot-film anemometry
IS identical.

* The heated wire, whose resistance is dependent on the
temperature.

« Temperature changes due to velocity fluctuations
(=resistance changes) are detected by means of a
bridge circuit.

* For the sensor by Joule heating:

heat loss : 72

O=IFE=1 R=—-

R

Constant current = R changes = wire temperature changes

constant temperature = R remains constant = E changes
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CCA&CTA

Basically two methods of operation are possible.
* CCA : (Constant current Anemometer)
The heating current I is held constant.
= R is then a measure for heat loss Q.
« CTA: (Constant temperature anemometer)
The resistance R, and hence the temperature of the
sensor is held constant.
= The bridge voltage E is then a measure for Q.

~ZHl) 'I*= ST ——
o~ ﬁ e
b Tezd
(frer Lot m, :
Efedyonics dm : &_
an'he:'!
we ~
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CCA
Advantages :

» good signal-to-noise(SNR) ratio.
« useful for flow temperature (fluctuation) measurements.

- heating the sensor only marginally over ambient makes it
insensitive to velocity fluctuations, but still sensitive to ambient
temperature changes.

- linear temperature-voltage response.

Disadvantages :

* |low frequency response due to thermal inertia of sensor;
thinner wires help but are more susceptible to breakage.

* large velocity fluctuations can cause burn out.

* relatively low sensitivity to velocity changes in normal
range (>1.5m/s)

« compensation circuits (for thermal inertia of sensor) must
be adjusted for each sensor and velocity range.
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CTA

In CTA-mode the sensor 1s not required to change temperature,
thus there 1s no problem of thermal 1nertia as in CCA.

« Advantages :
- large bandwidth
the limiting frequency 1s
governed by the electronics
(~150kHz)
- very sensitive to velocity
fluctuations
« Disadvantages: requires a
stable feedback electronics.
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Hot-wire probe

« Hot-wire (HW) probe
¢@:1~10pum, L :~200 @ BN
Wire materials are chosen mainly §(ﬁ:§
according to their temperature sensitivity
R=R,[1+ a,(T-Ty + a,(T-T,))>+...]
for platinum: a, =3.5 x 1073 /°C, a,=-5.5 x 1077 /(°C)?
for tungsten: a, =5.2 x 10 /°C, a,= 7.0 x 107 /(°C)?
 In addition, the material must be mechanically robust.
Comparison of different materials according to various
criteria (1.- highest ranking):

Material a, Mech. strength | Time constant
Tungsten 2 1 1
Platinum 3 4 3
Nickel-Platinum 1 3 4
Iridium(80%Pt) 4 2 2
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Heat transfer of a Hot-wire probe (l)

« Radiation and natural
convection losses are
negligible for most
operating conditions. '

« Conduction to the prongs st |
can be up to 20% of Qgc, $ T
and is given by Fourier as: Q= TR= 5= Gt G &7 S

U0 11d” e

e e

* Forced convection (of a [y, = Ny(Re, Pr, Gr, Ma, I/d, AT,...)
cylinder in parallel flow):

Qrc =Numl k(Tw-Ta);, Nu 2%
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Heat transfer of a Hot-wire probe (i)

« Many influentral parameters can be neglected under certain
conditions.
Nu=Nu(Pr,Re)
(by constant reference temperature, fixed operation

condition, excluding low velocities.) T,

* Most commonly used reference temperature 3
Is the film temperature — T

T.,=0.5(T,*T,) —

» The first theoretical solution, based on potential flow theory,
for the heat transfer from circular cylinder was given by

King(1914): \/2

Nu — l 4+ [— Re Pr For RexPr >0.08
It

Tt
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Heat transfer of a hot-wire probe (lll)

« Today, many people are still using the relation in a modified form
for hot-wire measurement. The constants A, B, n and s are

determined by calibration. 77 O
Nu = Eél(Pr, AT) + B(Pr, AT) Refnggﬂg
04, O
Author conditions A B n S
King(1914) Pe=RePr>0.08 I/m | @QPym*®| 0.5 0
Kramers(1946) 0.01,Re<1000 | 0.42Pr** | 0.5Pr>> 0.5 0
Collis & Williams (1959)| 0.02<Re<44 0.24 0.56 045 | 0.17
44<Re<140 0 0.48 0.51 | 0.17
Koch & Gartshore(1972) Re<4.2 0.72 0.80 0.45 |-0.67

« A simple form has recently been proposed by Wang et al. (2001)

For laminar steady air flow: A’=0.502, B’=0.434
For laminar unsteady air flow:
A'=-0.153, B'=0.527, T,/T,<1.8
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Calibration of Thermal Anemometer

« Although there are plenty empirical values for the
calibration constants in the literature, however, no (hot-
wire) probe can be made absolutely the same as the
other, therefore, it is recommended to calibrate all the
hot-wire probe when it is newly used.

 Calibration of directional sensitivity of a probe is only
necessary for multi-wire-probe or for inclined probe.

A calibration nozzle ] e Cpale) po i il gas s
or wind tunnel is best =+ =~ = TR EC:

suited for multi-wire-

probe or for inclined el - gaval ot
probe. _
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Directional sensitivity of HW

* The heat loss due to force convection is dependent on
direction as well as the magnitude of velocity vector.

U;: tangential Uy * Frgaiial
UN: normal N
Ug: binormal s Dicaml

Common practice is to introduce
the effective cooling velocity  U_;= f(a, 3)|U]
where a and (3 are the yaw and pitch angles respectively.

« It is customarily assuming E2=A+BU_"=A+B f(a,)"|U|"
l.e., the yaw and pitch influence can be separated from the

speed influence. 1 }
p il U"_ ’.1,'_.3 Fli"_ LLI-_I',{E_P
E oo £ o o
ntbe) : L-r-‘:,r J— U*’_“:l’-"_ :
- :/ IuIr.- 5 A L
Iir —'il_—n B = q;. >
é
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Hot wire and hot film

Comparison of hot-wire to hot-film probes:

- Advantages of hot-wire probes: S;;':;'zﬁ,fm AT
- low thermal inertia e { o
- high bandwidth X ¢ {sdmeb.;,&gggng
- high sensitivity e R enes

- Advantages of hot-film probes: f ;;fgéigrlr_ii;?iﬂ.:,f;i”.f’.?h —

- long time stability v

- uniform production possible (constant callbratlon
coefficients for the same type of sensors)

- very robust mechanically, not sensitive to
contamination

- can be easily insulated with quartz film (useful for
conducting liquids)
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Frequency response

 The dynamic response of hot-wire sensors as a first

order process: dTl’
m(C —

S S dt

= PR{1+a(T, ~T,)] -7k, [(T, -T,)

« However, as an anemometer, several other factors
have an influence, such as:
- the probe type (aspect ratio)
- feedback amplification
- dynamic response of electronic components
- bridge adjustment (impedance matching...etc.)
therefore the dynamic response is usually determined
experimentally, either directly or indirectly.
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Commercial probes ()

General Puﬁ)ose Probe

{50} Hot Film 1
9.5 mim (.38} Hol Wire -
38 mm (150} ——-‘
; _ o .

32mm (125) Dia.  L4.6 mm (18) Dia. 4|J.m ()
General Purpose Probe

12.7 mm {.50) Hot Film
4‘ 3-Emnl1501'
:ﬁ;
3.9 mm (155) Dia.  L4.6 mm (18} Dia. zoum (p

Mlnlature Straight Probe

B.4 mm (.25)
:a-amusu:——‘

; = o Streamlined Probe

1.5 mm {.060) DIuIszmmUEs] Diad  -4.8 mm (18) Dia. —-: f 8.3 mim {.25) Hot Film
laa mm (1.50) —-‘
Subminiature Straight Probe
4.8 mm (19) i{ |
A‘ 32 mm (1.25) 4-‘ a.2mm {125) Dia.  L4.6 mm (18) Dia,
P T

l-l]H mmim {.0K35) Dia.
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Commercial probes (Il

Standard " X" Probe

12.7 mm {.50) Hot Film
9.5 mm [.38) Hot Wire
. aﬂmm{lﬁﬂ] et

@
@

3.2 mm {125) Dia.

Boundary Layer "X" Probe

- be— 12.7 mm (.50)
- S-Enwnuﬁl]] ——‘

.-  —

ia= @

IE?n‘m

[5'0] SEmm{!EE:Du |d5mm{13iD|a

Standard 90° "X" Probe
38 mm {1.50) —Iﬁ{l

= 3.2 mm [125) Dia. “4.6 mm [1B) Dia.

(AN

[y 127 mm { 50) Hat Film
™ 9.5 mm (.38) Hot Wire

304.8 mm (12.0) -

@ m ] Y, : m
- Waided thermocouple 2 MM (18) DILJ

(Type-T Copper Constantan)
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Commercial probes (ll)

Standard probe for three component
measurements. Sensors oriented 90° to
probe body. Sensor orientation designed to
minimize sampling volume and minimize
flow disturbance. For velocity and
turbulence measurements to 150°C.

|. ................... — 457 mm (18.0)
..... .
: 3%
! T 4.6 mm (.18) Dia
51 mm
(2.0}

BOmm
L B (.31) Dia
(3.5) 1 : 2 mm (.08)
4.6 mm

? {.18) Dia.
|

L ' 3

12.7 mm o
(.50) M
J—.Ip— & Sensor Angles Enlarged End View
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Hot-wire by IC-technology

(from Jiang et al. [1994])

® Advantages:
high spacial resolution,
high response (~MHz),
disposable, cheap

(1Tum x 70 um single hot wire) (hot- wire array)
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Shear stress sensor by IC-technology.

(from Jiang et al.[1996,1997])

® Advantages:
high spacial resolution,
high response (~MHz),
disposable, flexible

single sensor (a flexible 128 array)
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Introduction to

Laser Doppler Anemometry
(LDA)
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LDA systems
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Principle and configuration of LDA

(Flow) Test section
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Characteristics of LDA (I)
® Advantages:

— Non-intrusive

— no calibration required (not strongly dependent on the
temperature, density, composition of the flows)

— sensitive to velocity magnitude and direction

— linear transfer function for velocity measurements

— measures a single desired velocity component directly
— high accuracy obtainable

— very high frequency response

— very small measuring volume

— high dynamic range (from um/s to 1000 m/s)
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Characteristics of LDA (ll)

® Disadvantages:

— relatively expensive for set-up and
maintenance

— seeding particles in the flow required

— optical access to measuring point required
— flow medium must be transparent

— experienced man-power recommended

— spherical particles based

— relatively huge and heavy for traditional LDA
system
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Principle and configuration of LDA
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Introduction to Laser

© Laser (F5S ~ HOG ~ #8:5) -
Light Amplification by Simulated Emission of
Radiation

® Characteristics of Laser:

- high light intensity
- narrow monochromaticity

- high coherence (temporal & spatial)
- low divergence angle (0.1°: 360°)
- short pulse time(ns ~ ps)
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Development of LASER

1900
1905

1917
1954

Planck’s quantum theory
Einstein’s photon theory

Einstein’s stimulated radiation theory
Townes produced the 1st Maser

1960/5 Maiman produced the 1st rubby Laser
1960/11 1st gas Laser (He-Ne)

1962

1st semi-conductor Laser(GaAs)

1964 CO,-Laser, Ar*-Laser, YAG-Laser,

1970

Dye-Laser

Excimer Laser
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Laser modes & polarization

TEMge

! e TEM“

(b) {c)
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Laser safety

Class I: . B

no gangeous, REX \ e |

<0.4mW s

Class II: SN/ a
> U”

dangerous for
direct _
observation, ywmm 1
<1mW =
Class lll:
1~500mW
Class IV:
>500 mW

Al
5t

- ¥E

FEEE

o m

S
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Principle and configuration of LDA

Beam collimator
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Beam Collimator

® Beam collimator is basically a
pair of positive and negative lens,
which is used to control the beam
divergence of a given laser.

® Collimator is used to adjust the
positions of both laser-beam
waists located at the same place,
to avoid artificial turbulence ‘
caused by fringe-spacing : —_
variations. |

® The need of collimator increases
as the optics become more
complex.
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Principle and configuration of LDA
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Beam Splitter

==
/ .
= — / C7 The inte grated
; i beamsplitters:
I (= =
"""" !
Laser (b)) PM
iy (SR u
E o T Laser . —
PM ‘ |l "’——_— - -
{10 N A
(a) (b) (¢)
— —
—_—
—> F———
) (d) (e)
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Principle and configuration of LDA

Beam expander

ol

P
.-.-;o “v\‘"’ 1\.."'-.
) "\\" ﬁ@i@ﬂ@ g
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Beam Expander

©®© Beam expander is recommended when measuring for the
case of large distance, or high velocity gradient or low SNR.

©®© Beam expanders are designed to increase (a) the input
beam diameter and (b) the collection aperture (for
backscatter). This results in a smaller mcv and better signal
quality.

® A beam expander with expansion ratio E may decrease
diameter of mcv (4, = m4f?os¢) by a

factor of E, decrease nieasuring

length by a factor of E?, and d Exg

improves estimated SNR.
® Commerial available: E=2~ 8.5
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Fringe Model

® Moire ri e canbe used to illustrate the

basic characteristics of an LDA. The resulting
re uen agrees with that derived using the

Doppler principle.

i
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O
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Dual Beam LDA

® Most commonly used arrangement

Mirror ,Lens Ly Lens L, J Mask

Laser \

Beam splitter e—

A 4
Y
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Reference Beam LDA

® advantageous in low-transparency
ediu
® in general lower SNR

Photodetector

Focusing iens t
._ 3\
4] . . _
| .

Field stop to gefine
solid ongie of light
coliection
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Two-Scattered Beam LDA

O,

Mirror

Particle

-

— et o — —
— - o e——— o

Beom
splitter "€ 5
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Measuring Control Volume (I)

® In describing the measuring control volume, the
properties of Gaussian beams must be considered.

l
So Oe-1 51
[
(FE T IS = f
o= buait / ] i T I
i Gg— == %, T Jp—
Dc—! e’ f : de”’
Beam  Laser output Lens focs! Focal
waist mirror length = f waist
S —
1 J—
(s -1 +(mD . A For so=f,
e h —foand d. = 4 A
| | m then s;=1 and 4. =
= (1-—  +( < e
e—2 e—Z A
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Measuring Control Volume (i)

® The measuring control volume (mcv) is ellipsoidal in
shape

diameter of meva, =d ., ¢
|ength of mcv: =4 b d:beam spacing before lens

: _ ¢ . intersection half-angle
no. of fringes: =1 d D,

e CONTOUR

| Y
\t( dm
\ Ao PLANE
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Characteristics of LDA Signals
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Signal-to-Noise Ratio

De-2 r—— t —_—
—— ~ — % | “ l I
I 2 I
? Da ]EL
<
| — "
SNR = signal to noise ratio (Power) dp = particle diameter, pm _ ] —_ ]
- V — __max min
nq = quantum efficiency of photodetector G = scaltering parameter [ + [
Po = power in each beam, watts V' = visibility max min
af = bandwidth, MHz 2
SNR—4x10”an°[Da De" 2 .2
Af L ra f dpGV
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Directional Sensitivity

® The simple dual-beam LDA does not allow the direction of
the particle to be determined. In addition the measurable
turbulence level is very low.

® The signal processor may require a minimum number of
Doppler periods for validation, thus restricting particle
trajectories to a certain range of angles. This leads to a
biased velocity.

® Both the directional sensitivity and the problem of measuring
high turbulence levels can be resolved using frequency

shifting.
\ @ @ |
0 AAAMAQM AAAAAA-_
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Frequency Shifting (l)

® The concept of frequency

shifting involves producing a
frequency difference Jot/s =t
between two LDA beams. | L M
This can be achieved by
shifting the frequency of one Jots2
beam or of both but different

amounts. the detector sees !
©® The detected frequency will U,

be larger or smaller than f, =2y =
depending on the sign of the 1/U e

v

v

—

velocity.
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Frequency Shifting (1)

©® Particle with U ;=0 still produce signals. By choosing f
correctly there will be sufficient Doppler periods to allow
validation by the processor. laser beam

® Methods of frequency shifting:

— rotating grating (mechanical):
simple, inexpensive,
moderate accurate,f.=n N <15MHz rotating grating

— Pockel’s cell: produces transient shift magnitude
— Kerr cell (electro-optical): processing complex

— Bragg cell (AOM): highly stable, accurate, relative high
shift frequency

Measurement and Simulation of :::".-' HELEHELRTRF O
Optomechatronic Systems Opto-Electronics Teaching Resources Center



Receiving Optics (1)

® The effective mcv is the volume imaged onto
the pinhole of the photodetector.

Lens L, Lens L,

Mirror

—_ﬁﬁ__

S —
—— i ——

Beam splitter

Magnification factor : M= b/a
Effective no. of fringes :
Nf’ = Nf dph /(M dm)
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Receiving Optics (1)

® Forward Scattering
' =  Good SNR
T G‘) T j * Low laser power
1s needed

* more complex
traversing rig

® Backward scattering

* Only one optical acess
necessary

 Self-adjusting

» more laser power needed
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Light scattering, Signal processing
&
LDA Applications

L —

—
_—1
]
]

a—
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Required Properties of Particles

Suitable tracer particles used for LDA
measurements should have the following
properties:

« small slip velocity

* good scattering properties to yield high
signal strength

» good produceability of particles
* cheap

* chemically inactive

* non-toxic
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Light Scattering from particles (l)

® The light scattering phenomena is described by the

Mie-scattering thezory for spherical particles.
r T
V4

© Mie parameter: g = and m (refractive index)

® The intensity of scattered light depends on:
— incident intensity

— wavelength ( A )

— particle shape , particle size ( r, ), particle
concentration and particle distributions

— index of refraction of particle

— scattering angle
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Light Scattering from particles (ll)

40° 50° 70° 90° 110° 130° 140° T70° 90° HO® 130° 180° (50°

30° 150°  60° 160°
20° '60° 233\\\\ 170°
2rp7T lg: Wi :;2" zoo§ |
— % 0° =1 180°
340° zoo°32°°//// 190°
330° 210° 3|0°/// \\\\ 200°

320° 310° 290° 270° 250° 230° 220°

240°

290° 270° 250° 230° 220° 210°

280° 320°

220°
The intensity of
scattered light 200°
depends on the |goe]

particle size.
1€0°

140°

340°

Light intensity
variation as

3i°° function of the
direction of
observation.

20°

For a given system, the signal intensity 1s several orders of magnitude
larger in forward scattering arrangement.
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Light Scattering from particles (lll)

A . . )
Rayleigh P d

region

: region of
i geometric optics
< >

log(Ps)

téransition%ul

region * |

log(d,)
(* for water d, ~ 0.5 - 3pm)

1?O° 90° Gp°
150° - L300
180° 0
2100 7] -330°

22..00 r T T - T L T T
1 10 100 1000
—=> Streuintensitdt

light intensity

(for water droplet d, =1 pm )
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Signal Processing Tasks (l)

® The signal processing has the broad task of extracting
fluid mechanics information from the Doppler signals.
This entails
— signal conditioning

— determination of
Doppler frequency Laser

Q\:;»{:: o 7

VD/\ (B.C.)
UD — . l ] J Band Filter
2 S11 ¢ T;ansiednt Tracker Counter (V) ® (Vi ®
— computation of I - | WJ
StatISt.ICS and possible =" — o
coordinate == LJL hesSi
transformations. R i
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Signal Processing Tasks (ll)

® The signal processor is not an independent part of a LDA
system.

— —
, Scattering light Methods to

physical process detector, amplifier, determine
Jp filter Ip, velocity

® Don’t expect to improve your signal by signal processor.

® There are several (either time domain-based or frequency
domain-based) instruments available to process the LDA-
signal.
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Diode Laser Fiber-optic LDA

® The whole system is handy, compact and robust
with minimum adjustment necessary.

® The entire optical system: 500mm x 175mm (LxW)
®100mW, 830nm, low power consumption (~250W)

Diode- Collimator Optical Beamsplitter- Fiber-

Laser Isolator Cube Couplers
Bragg-
D} Cells
\ ATD

@) Recciving Fiber Base Plate

@ Transmitting Fibers

Probe Head
{ =
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Wind Tunnel LDA

® There are generally additional constraints
and demands, such as: seedings, long focal
length, special traversing mechanism
...etc. for LDA used in wind tunnel.

®Little or no particle seeding is .
expected, because of —— g

— tunnel contamination | | ‘,/
. - ~ = o
— flow disturbance H

— mcyv is too large )W
| /\\
| KA//\
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Applications of LDA (I)

® Long range wind velocity
measurements (LSTM, FAU)

® 150~300m Zoom-optics, 10W
(0.514nm) SP-laser 2030

by

B
LDA
WINDMESSGERAT

Sendeseite (Draufsicht) 1

- YN
—= /\‘J 72
T ] y
\ T
" 10 9 87 6 543
=X ~——1

Seitenansicht von 7

Empfangsseite (Seitenansicht)

20 19 18 17 16

P

Sendeoptik
(1-7)
- M 10 9
12 13
1 Argon-Ionen-Laser 6 Lochblenden 11 Negativlinse 16 Lochblende
2 Umlenkspiegel 7 Strahlaufweitung 12 Fangspiegel 17 Justierlinse
3 A/2-Plattchen 8 Teleskopleitrohre 13 Hauptspiegel 18 Justierlinse
4 Strahlteiler 9 durchbohrter Spiegel 14 Abbildungslinse 19 Interferenzfilter
5 Bragg-Zellen 10 Zoomlinse 15 Umlenkspiegel 20 Photomultiplier
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Applications of LDA (i)

® wind velocity
measurements
(LSTM, FAU)

“L RSt
@ Sem i Con d u Ctor L DA Collimator Avalanchediode
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Applications of LDA (Il

Auswechselbore
Fronthnsen
. oa o Emplangsiinse ] Koltimotor _
Plonspiegel o4, 400mm f«110men Avaianche-Photo-Diode f=12mm Peitier—Elemente

® Wind measurements

in the sky 2 [W— -
(LSTM, FAU) GKisssamany BIRETT

~~Signsl und Versorgungsisitung
\. Sichtfenster

\
\Sende- und Empt mit L und Ph
{traversierbar oder Einhai benei )
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Applications of LDA (1V)

® Q =0.05 cm?/min, range: 1:6500

Pip:

o2 £ ieroptik _ Strahlteiler 2% Flid Linse Strahlenfalle  Photodiode T
I vin?sT) =107 108 1.5x10°5 : >L é G
== L — Hor ‘7:/,
IO %_,5, \:% ,

PTA N \ Turbulent Turbulent Turbulent
E -
q 2 o

U \\ \?/ “‘“a'ﬁ

Reyiq (V2300

100
C L1 I’ 1 111 | 1 11 IJ ! 11 I| 1 1] | | 1 11 | 1 111
1072 107! 100 10! 102 108 1ot 100
Q[cm3mm 1)
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Applications of LDA (V)

©® BMW-403 motor measurements  _ = A
g P g e

= |

[ ] 1
12 gﬂ 0.00 PJ------- o I Y -100§0-
E : Mittl. Geschw. E E’,
— L H % : ! _ 50 ?E.
AT H (g;’ ] E Datenrate }E E
“2000% T sk T s T Ao =

Kurbelwinkel

® Laser, @ Braggzelle, (@) Kollimator, (4) Farbirennung (AMICI-Prisma), (3) Spiegel,
@ Umlenkung ® Einkopplung, Glasfasern, @ MeBkopf @ Traversierung, @ Farbtrennung
des Streulichtes, @Avalanche Photodioden, {3) Frequenzzahler, {4 Computer, {B) Drucksensor,
(® Kurbelwinkelgeber
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Applications of LDA (Vi)

®Basic research of T "
separated flows -k f% @
U VEL. COMP. PROFILFS ——— ~ 0.900

T\k NF%K&
' 3
V VEL.. COMP. PROFILES
TURB. KIN. ENERGY

[ 1 1 I
0 2 b 6
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Introduction to

Particle Image Velocimetry
(PIV)
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PlV system

Nd:YAG lasers

[
mirror r
A 4 cylindrical
dichroic L lens
polarization spherical
splitter lens prism (Dantec)
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Introduction to PIV

* First commercial PIV in 1988

* PIV is a quantitative flow visualization by using an
optical method to measure fluid velocity at many
points in a flow field simultaneously.

« Similar techniques:
PTV: particle tracking velocimetry, offers lower

accuracy and resolution for low seeding density.

LSV: laser speckle velocimetry,

Measurement and Simulation of :_.7' HELEHELRTRF O
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Characteristics of PIV

« Advantages:
- provides instantaneous velocity vectors in detail
(for flow structure, especially for turbulence).
- provides spatial gradients of instantaneous and
average flow properties for many points
- Ideal for unsteady or periodic flows
- obtain global nature of flows

- Disadvantages of PIV:
- expensive cost
- seeding
- small measuring region
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Optomechatronic Systems Opto-Electronics Teaching Resources Center



Principle of PIV

=>» [lluminate a seeded flow twice in succession

=>» Record the images using a CCD or film camera
=>» Digitally process the images to obtain a 2D
velocity field frozen in time

Laser light sheet

Flow plane .

At - time between two pulses Velocity of particle A

Ax - particle displacement in x direction u, =Ax/At asAt —> 0

Ay - particle displacement in y direction u, = Ay/At as At —> 0
Measurement and Simulation of éﬁ,_f RETEHLEZTRP O
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Data processing of PIV

 The image displacements are obtained by doing the
spatial crosscorrection or spatial autocorrection of
the image intensity field.

» Spatial cross-correlation:

- Particle images from each laser pulse is on separate frames
- No directional ambiguity (because sequence of frames is known)
- Dynamic range can be greater than 100 to 1
- Robust algorithm - can detect lower signal quality
« Spatial Autocorrelation
- Double or multiple pulses on each frame
- Directional ambiguity
- Dynamic range may be up to 10 to 1
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Crosscorrelation Processing

Interrogation
region
g\\\\\\ Interrogation
RN region -
.\ O ‘1\ R e o /o I e ’
frame 1 o
e, ro-=--------- [

\ Cross- o

c.e RS - correlation |::>

e . particle
frame 2 =2>| . ° . . displacement

Each frame contains particle images from one laser pulse.
Analysis by correlating the two image fields from separate video frames.
Advantages:
works very well to >400 m/sec (with specially developed cameras and frame
straddling technique)
no additional hardware required to resolve flow direction
frames need not be successive (especially for measuring very low speed flows)
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Frame straddle with free-run camera

Camera

Exposures Frame 1 Frame 2

Synchronizer —\—L

<— Pulse delay—>
—>  «— Pulse separation

‘ ‘ At

max. measuring velocity is function of image size and
camera type

Laser pulses
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Frame straddle with external trigger

External
Trigger

Maximum Pulse repetition rate ————»
Camera

Trigger

Camera
Feedback

’/\

Image 1 Exposure

Image 2 Exposure —

Camera
Exposures

Camera —Image 1 Readout—»j<— Image 2 Readout

Image Readout
— —Pulse delay

—» <«+—Pulse separation

Laser
Pulses
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Autocorrelation Processing (I)

.'*: '. ‘_0.. * :°: . . ;:s - : ............
‘S. ':. . i . .o. :.. . u.o:.. .......
08.0 . .o: ° . :. . . - ....
Flow field Image
A Cf
A .
2 |
B,
B,

. q
L=
Interrogation

region

Auto-
correlation \
| = Image
F\\ . displacement

Directional ambiguity:

Is the flow direction from C,

toC,orfromC,t0 C, ?
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Autocorrelation Processing (Il)

Solution: using Image shifting to make all displacements to be positive

Velocity =
image displacement- image shift
A
Eile “iew LUT LaserPulse Acquire Process Graphics Edit Mindow Help — DlSplacement

| BkFolel field

| Velocity field
|Feady b
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